biom.table.Table.iter_data¶
- Table.iter_data(dense=True, axis='sample')¶
Yields axis values
- Parameters:
- densebool, optional
Defaults to
True
. IfFalse
, yield compressed sparse row or compressed sparse columns if axis is ‘observation’ or ‘sample’, respectively.- axis{‘sample’, ‘observation’}, optional
Axis to iterate over.
- Returns:
- generator
Yields list of values for each value in axis
- Raises:
- UnknownAxisError
If axis other than ‘sample’ or ‘observation’ passed
Examples
>>> import numpy as np >>> from biom.table import Table >>> data = np.arange(30).reshape(3,10) # 3 X 10 OTU X Sample table >>> obs_ids = ['o1', 'o2', 'o3'] >>> sam_ids = ['s%i' %i for i in range(1,11)] >>> bt = Table(data, observation_ids=obs_ids, sample_ids=sam_ids)
Lets find the sample with the largest sum
>>> sample_gen = bt.iter_data(axis='sample') >>> max_sample_count = max([sample.sum() for sample in sample_gen]) >>> print(max_sample_count) 57.0